Dynamic latent variable regression for inferential sensor modeling and monitoring
Canonical correlation analysis (CCA) and projection to latent structures (PLS) are popular statistical approaches for process modeling and monitoring. CCA focuses on the correlation structure only, while PLS focuses on maximizing the covariance between process variables X and quality variables Y. In...
Gespeichert in:
Veröffentlicht in: | Computers & chemical engineering 2020-06, Vol.137, p.106809, Article 106809 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Canonical correlation analysis (CCA) and projection to latent structures (PLS) are popular statistical approaches for process modeling and monitoring. CCA focuses on the correlation structure only, while PLS focuses on maximizing the covariance between process variables X and quality variables Y. In this article, a dynamic regularized latent variable regression (DrLVR) algorithm is proposed for dynamic data modeling and monitoring. DrLVR aims to maximize the projection of quality variables on the dynamic latent spaces of the process variables. A regularization term is incorporated into DrLVR to handle the collinearity issues. The dynamic monitoring scheme based on the DrLVR model is also developed. Both numerical simulations and the Tennessee Eastman process data are employed to demonstrate the effectiveness of DrLVR. |
---|---|
ISSN: | 0098-1354 1873-4375 |
DOI: | 10.1016/j.compchemeng.2020.106809 |