On prime values of binary quadratic forms with a thin variable

In this paper, we generalize the result of Fouvry and Iwaniec dealing with prime values of the quadratic form x2+y2 with one input restricted to a thin subset of the integers. We prove the same result with an arbitrary primitive positive definite binary quadratic form. In particular, for any positiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2020-10, Vol.102 (2), p.749-772
Hauptverfasser: Lam, Peter Cho‐Ho, Schindler, Damaris, Xiao, Stanley Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we generalize the result of Fouvry and Iwaniec dealing with prime values of the quadratic form x2+y2 with one input restricted to a thin subset of the integers. We prove the same result with an arbitrary primitive positive definite binary quadratic form. In particular, for any positive definite binary quadratic form F and binary linear form G, there exist infinitely many ℓ,m∈Z such that both F(ℓ,m) and G(ℓ,m) are primes as long as there are no local obstructions.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms.12336