On prime values of binary quadratic forms with a thin variable
In this paper, we generalize the result of Fouvry and Iwaniec dealing with prime values of the quadratic form x2+y2 with one input restricted to a thin subset of the integers. We prove the same result with an arbitrary primitive positive definite binary quadratic form. In particular, for any positiv...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2020-10, Vol.102 (2), p.749-772 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we generalize the result of Fouvry and Iwaniec dealing with prime values of the quadratic form x2+y2 with one input restricted to a thin subset of the integers. We prove the same result with an arbitrary primitive positive definite binary quadratic form. In particular, for any positive definite binary quadratic form F and binary linear form G, there exist infinitely many ℓ,m∈Z such that both F(ℓ,m) and G(ℓ,m) are primes as long as there are no local obstructions. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms.12336 |