Risk Assessment of Offshore Micro Integrated Energy System Based on Fluid Mosaic Model

Offshore micro integrated energy systems are the basis of offshore oil and gas engineering. In order to evaluate its operational risks and ensure the safe development of marine resources, a risk assessment scheme for offshore micro integrated energy systems based on a risk fluid mosaic model is prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.76715-76725
Hauptverfasser: Zhang, Anan, Peng, Gaoqiang, Yang, Wei, Qu, Guanglong, Huang, Huang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Offshore micro integrated energy systems are the basis of offshore oil and gas engineering. In order to evaluate its operational risks and ensure the safe development of marine resources, a risk assessment scheme for offshore micro integrated energy systems based on a risk fluid mosaic model is proposed. Aiming at the current situation that the traditional equipment material-energy conversion model has a large amount of modeling and does not fully reflect the system structure, a material-energy conversion model based on unified modeling is constructed, and a risk function is introduced to analyze the material-energy of the power equipment under risk conversion; At the same time, a risk fluid mosaic model based on the system structure and material-energy carrier is constructed to describe the dynamic behavior of risk from the material-energy flow; Aiming at the fact that the traditional risk grading model cannot reflect the overall risk of the system when multiple risks are involved, a multi-weighted system risk grading model is proposed to describe the overall risk situation of the system under multiple risks. The validity and rationality of the model and method proposed in this paper is verified by using an offshore oil and gas platform in the Bohai Sea as a simulation example.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2989508