Linear conditioning, weak sharpness and finite convergence for equilibrium problems
The present paper first provides sufficient conditions and characterizations for linearly conditioned bifunction associated with an equilibrium problem. It then introduces the notion of weak sharp solution for equilibrium problems which is analogous to the linear conditioning notion. This new notion...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2020-06, Vol.77 (2), p.405-424 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present paper first provides sufficient conditions and characterizations for linearly conditioned bifunction associated with an equilibrium problem. It then introduces the notion of weak sharp solution for equilibrium problems which is analogous to the linear conditioning notion. This new notion generalizes and unifies the notion of weak sharp minima for optimization problems as well as the notion of weak sharp solutions for variational inequality problems. Some sufficient conditions and characterizations of weak sharpness are also presented. Finally, we study the finite convergence property of sequences generated by some algorithms for solving equilibrium problems under linear conditioning and weak shapness assumptions. An upper bound of the number of iterations by which the sequence generated by proximal point algorithm converges to a solution of equilibrium problems is also given. |
---|---|
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1007/s10898-019-00869-9 |