Microwave power induced resonance shifting o silicon ring modulators for continuously tunable, bandwidth scaled frequency combs

We demonstrate a technique to continuously tune center frequency and repetition rate of optical frequency combs generated in silicon microring modulators and bandwidth scale them. We utilize a drive frequency dependent, microwave power induced shifting of the microring modulator resonance. In this w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2020-04, Vol.28 (9), p.13032-13042
Hauptverfasser: Nagarjun, K. P., Raj, Piyush, Jeyaselvan, Vadivukkarasi, Selvaraja, Shankar Kumar, Supradeepa, V. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate a technique to continuously tune center frequency and repetition rate of optical frequency combs generated in silicon microring modulators and bandwidth scale them. We utilize a drive frequency dependent, microwave power induced shifting of the microring modulator resonance. In this work, we demonstrate center frequency tunability of frequency combs generated in silicon microring modulators over a wide range (similar to 8nm) with fixed number of lines. We also demonstrate continuously tunable repetition rates from 7.5GHz to 15GHz. Further, we use this effect to demonstrate a proof-of-principle experiment to bandwidth scale an 8-line (20dB band) comb generated from a single ring modulator driven at 10GHz to a comb with 12 and 15 lines by cascading two and three ring modulators, respectively. This is accomplished by merging widely spaced ring modulator resonances to a common location, thus coupling light simultaneously into multiple cascaded ring modulators. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.386810