An explanation of the mechanisms underlying fragile X-associated premature ovarian insufficiency

Fragile X and fragile X-associated tremor-ataxia syndrome (FXTAS) are caused by mutations of the FMR1 gene. The mutations causing FXTAS can expand in a generation to a “full mutation” causing fragile X syndrome. The mutations causing FXTAS and the phenotype, fragile X-associated premature ovarian in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of assisted reproduction and genetics 2020-06, Vol.37 (6), p.1313-1322
Hauptverfasser: Rose, Bruce I., Brown, Samuel E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fragile X and fragile X-associated tremor-ataxia syndrome (FXTAS) are caused by mutations of the FMR1 gene. The mutations causing FXTAS can expand in a generation to a “full mutation” causing fragile X syndrome. The mutations causing FXTAS and the phenotype, fragile X-associated premature ovarian insufficiency (FXPOI), are referred to as the FMR1 premutation (PM). The objective of this paper was to formulate a theory to explain the Mechanism for FXPOI. Recent research on fragile X syndrome and FXTAS has led to sophisticated theories about the mechanisms underlying these diseases. It has been proposed that similar mechanisms underlie FXPOI. Utilizing recent research on FXTAS, but a more detailed application of ovarian physiology, we present a more ovarian specific theory as to the primary mechanism explaining the development of FXPOI. The FXPOI phenotype may best be viewed as derivative of the observation that fragile X PM carriers experience menopause an average of 5 years earlier than non-carriers. Women carrying the PM experience an earlier menopause because of an accelerated activation of their primordial follicle pool. This acceleration of primordial follicle activation occurs, in part, because of diminished AMH production. AMH production is diminished because of accelerated atresia of early antral follicles. This accelerated atresia likely occurs because the fragile X PM leads to a slowing of the rate of granulosa cell mitosis in some follicles.
ISSN:1058-0468
1573-7330
DOI:10.1007/s10815-020-01774-x