Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt

Loading metal cocatalyst on semiconductor nanoparticles is a general strategy to enhance photocatalytic efficiency, while the consensus of selecting metal cocatalyst matching with semiconductor is still unclear. Herein, we investigated the charge transfer and separation efficiency between ZnO and co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2020-08, Vol.12 (15), p.3838-3842
Hauptverfasser: Liu, Qianxia, Wang, Zhuan, Chen, Hailong, Wang, Hao‐Yi, Song, Hui, Ye, Jinhua, Weng, Yuxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3842
container_issue 15
container_start_page 3838
container_title ChemCatChem
container_volume 12
creator Liu, Qianxia
Wang, Zhuan
Chen, Hailong
Wang, Hao‐Yi
Song, Hui
Ye, Jinhua
Weng, Yuxiang
description Loading metal cocatalyst on semiconductor nanoparticles is a general strategy to enhance photocatalytic efficiency, while the consensus of selecting metal cocatalyst matching with semiconductor is still unclear. Herein, we investigated the charge transfer and separation efficiency between ZnO and cocatalysts Ag, Au, and Pt nanoparticles respectively using ultrafast mid‐IR transient absorption spectroscopy. We found that Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer from ZnO to metal. Thus Ohmic contact would be better than Schottky contact. Since photocatalytic efficiency is also determined by chemical catalytic efficiency, we proposed a dual metal cocatalyst strategy for improving the overall photocatalytic efficiency, with the inner metal forming Ohmic contact for efficient charge separation and shuttling electrons and the outer‐layer metal cocatalyst for optimizing the chemical reactivity. Photocatalysis: Interfacial charge transfer and separation efficiencies for ZnO nanoparticles and metal cocatalysts Ag, Au and Pt respectively were investigated by ultrafast mid‐IR transient absorption spectroscopy. Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer. A dual metal cocatalyst strategy is proposed for selection of the metal catalysis with the inner metal for efficient charge transfer and electron shuttle, and the outer‐layer metal for the optimal chemical reactivity.
doi_str_mv 10.1002/cctc.202000280
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_webofscience_primary_000529641000001CitationCount</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430941229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-60513c329091831916e511ed5c478b05745bce6b63b85d7404c8633687028ffc3</originalsourceid><addsrcrecordid>eNqNkMtOAyEUhidGE69b1yQuTVsYZhhYVuIt8RatGzcThh7qmBEqMDF9El9Xak1duFA2B8L3nXPyZ9khwUOCcT7SOuphjnOcHhxvZDuEs2pAuRCb6zvH29luCC8YM0Grcif7uO87CMg4jx6gAx1bO0PXEFWHpNMq1UWI6EQFmCJnkXxWfgZo4pUNBjxSdpq8ufIqtun71JhWt2D1AjUQ3wEserK36EZZl5jY6uWspXPjmg5-zxnPRmjcj9Bd3M-2jOoCHHzXvezx7HQiLwZXt-eXcnw10JRUeMBwSaimucCCcEoEYVASAtNSFxVvcFkVZaOBNYw2vJxWBS40Z5QyXqWMjNF0Lzta9Z1799ZDiPWL671NI-u8oFgUJM9FooYrSnsXggdTz337qvyiJrhehl8vw6_X4SeBr4R3aJwJX5nAWkpQmQtWJDMdItv4FZ90vY1JPf6_mmjxTbcdLP5Yq5ZyIn-W_ATJmahC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430941229</pqid></control><display><type>article</type><title>Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt</title><source>Access via Wiley Online Library</source><creator>Liu, Qianxia ; Wang, Zhuan ; Chen, Hailong ; Wang, Hao‐Yi ; Song, Hui ; Ye, Jinhua ; Weng, Yuxiang</creator><creatorcontrib>Liu, Qianxia ; Wang, Zhuan ; Chen, Hailong ; Wang, Hao‐Yi ; Song, Hui ; Ye, Jinhua ; Weng, Yuxiang</creatorcontrib><description>Loading metal cocatalyst on semiconductor nanoparticles is a general strategy to enhance photocatalytic efficiency, while the consensus of selecting metal cocatalyst matching with semiconductor is still unclear. Herein, we investigated the charge transfer and separation efficiency between ZnO and cocatalysts Ag, Au, and Pt nanoparticles respectively using ultrafast mid‐IR transient absorption spectroscopy. We found that Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer from ZnO to metal. Thus Ohmic contact would be better than Schottky contact. Since photocatalytic efficiency is also determined by chemical catalytic efficiency, we proposed a dual metal cocatalyst strategy for improving the overall photocatalytic efficiency, with the inner metal forming Ohmic contact for efficient charge separation and shuttling electrons and the outer‐layer metal cocatalyst for optimizing the chemical reactivity. Photocatalysis: Interfacial charge transfer and separation efficiencies for ZnO nanoparticles and metal cocatalysts Ag, Au and Pt respectively were investigated by ultrafast mid‐IR transient absorption spectroscopy. Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer. A dual metal cocatalyst strategy is proposed for selection of the metal catalysis with the inner metal for efficient charge transfer and electron shuttle, and the outer‐layer metal for the optimal chemical reactivity.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202000280</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Charge efficiency ; Charge transfer ; Chemistry ; Chemistry, Physical ; Contact resistance ; Efficiency ; Electron transfer ; Gold ; Infrared spectroscopy ; Metal forming ; Metal-semiconductor heterojunction ; Nanoparticles ; Noble metals ; Photocatalysis ; Physical Sciences ; Platinum ; Science &amp; Technology ; Separation ; Silver ; Ultrafast charge transfer ; Zinc oxide ; Zinc oxide (ZnO)</subject><ispartof>ChemCatChem, 2020-08, Vol.12 (15), p.3838-3842</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>26</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000529641000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3170-60513c329091831916e511ed5c478b05745bce6b63b85d7404c8633687028ffc3</citedby><cites>FETCH-LOGICAL-c3170-60513c329091831916e511ed5c478b05745bce6b63b85d7404c8633687028ffc3</cites><orcidid>0000-0003-0423-2266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.202000280$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.202000280$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Liu, Qianxia</creatorcontrib><creatorcontrib>Wang, Zhuan</creatorcontrib><creatorcontrib>Chen, Hailong</creatorcontrib><creatorcontrib>Wang, Hao‐Yi</creatorcontrib><creatorcontrib>Song, Hui</creatorcontrib><creatorcontrib>Ye, Jinhua</creatorcontrib><creatorcontrib>Weng, Yuxiang</creatorcontrib><title>Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt</title><title>ChemCatChem</title><addtitle>CHEMCATCHEM</addtitle><description>Loading metal cocatalyst on semiconductor nanoparticles is a general strategy to enhance photocatalytic efficiency, while the consensus of selecting metal cocatalyst matching with semiconductor is still unclear. Herein, we investigated the charge transfer and separation efficiency between ZnO and cocatalysts Ag, Au, and Pt nanoparticles respectively using ultrafast mid‐IR transient absorption spectroscopy. We found that Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer from ZnO to metal. Thus Ohmic contact would be better than Schottky contact. Since photocatalytic efficiency is also determined by chemical catalytic efficiency, we proposed a dual metal cocatalyst strategy for improving the overall photocatalytic efficiency, with the inner metal forming Ohmic contact for efficient charge separation and shuttling electrons and the outer‐layer metal cocatalyst for optimizing the chemical reactivity. Photocatalysis: Interfacial charge transfer and separation efficiencies for ZnO nanoparticles and metal cocatalysts Ag, Au and Pt respectively were investigated by ultrafast mid‐IR transient absorption spectroscopy. Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer. A dual metal cocatalyst strategy is proposed for selection of the metal catalysis with the inner metal for efficient charge transfer and electron shuttle, and the outer‐layer metal for the optimal chemical reactivity.</description><subject>Charge efficiency</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Contact resistance</subject><subject>Efficiency</subject><subject>Electron transfer</subject><subject>Gold</subject><subject>Infrared spectroscopy</subject><subject>Metal forming</subject><subject>Metal-semiconductor heterojunction</subject><subject>Nanoparticles</subject><subject>Noble metals</subject><subject>Photocatalysis</subject><subject>Physical Sciences</subject><subject>Platinum</subject><subject>Science &amp; Technology</subject><subject>Separation</subject><subject>Silver</subject><subject>Ultrafast charge transfer</subject><subject>Zinc oxide</subject><subject>Zinc oxide (ZnO)</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkMtOAyEUhidGE69b1yQuTVsYZhhYVuIt8RatGzcThh7qmBEqMDF9El9Xak1duFA2B8L3nXPyZ9khwUOCcT7SOuphjnOcHhxvZDuEs2pAuRCb6zvH29luCC8YM0Grcif7uO87CMg4jx6gAx1bO0PXEFWHpNMq1UWI6EQFmCJnkXxWfgZo4pUNBjxSdpq8ufIqtun71JhWt2D1AjUQ3wEserK36EZZl5jY6uWspXPjmg5-zxnPRmjcj9Bd3M-2jOoCHHzXvezx7HQiLwZXt-eXcnw10JRUeMBwSaimucCCcEoEYVASAtNSFxVvcFkVZaOBNYw2vJxWBS40Z5QyXqWMjNF0Lzta9Z1799ZDiPWL671NI-u8oFgUJM9FooYrSnsXggdTz337qvyiJrhehl8vw6_X4SeBr4R3aJwJX5nAWkpQmQtWJDMdItv4FZ90vY1JPf6_mmjxTbcdLP5Yq5ZyIn-W_ATJmahC</recordid><startdate>20200806</startdate><enddate>20200806</enddate><creator>Liu, Qianxia</creator><creator>Wang, Zhuan</creator><creator>Chen, Hailong</creator><creator>Wang, Hao‐Yi</creator><creator>Song, Hui</creator><creator>Ye, Jinhua</creator><creator>Weng, Yuxiang</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0423-2266</orcidid></search><sort><creationdate>20200806</creationdate><title>Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt</title><author>Liu, Qianxia ; Wang, Zhuan ; Chen, Hailong ; Wang, Hao‐Yi ; Song, Hui ; Ye, Jinhua ; Weng, Yuxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-60513c329091831916e511ed5c478b05745bce6b63b85d7404c8633687028ffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Charge efficiency</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Contact resistance</topic><topic>Efficiency</topic><topic>Electron transfer</topic><topic>Gold</topic><topic>Infrared spectroscopy</topic><topic>Metal forming</topic><topic>Metal-semiconductor heterojunction</topic><topic>Nanoparticles</topic><topic>Noble metals</topic><topic>Photocatalysis</topic><topic>Physical Sciences</topic><topic>Platinum</topic><topic>Science &amp; Technology</topic><topic>Separation</topic><topic>Silver</topic><topic>Ultrafast charge transfer</topic><topic>Zinc oxide</topic><topic>Zinc oxide (ZnO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qianxia</creatorcontrib><creatorcontrib>Wang, Zhuan</creatorcontrib><creatorcontrib>Chen, Hailong</creatorcontrib><creatorcontrib>Wang, Hao‐Yi</creatorcontrib><creatorcontrib>Song, Hui</creatorcontrib><creatorcontrib>Ye, Jinhua</creatorcontrib><creatorcontrib>Weng, Yuxiang</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qianxia</au><au>Wang, Zhuan</au><au>Chen, Hailong</au><au>Wang, Hao‐Yi</au><au>Song, Hui</au><au>Ye, Jinhua</au><au>Weng, Yuxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt</atitle><jtitle>ChemCatChem</jtitle><stitle>CHEMCATCHEM</stitle><date>2020-08-06</date><risdate>2020</risdate><volume>12</volume><issue>15</issue><spage>3838</spage><epage>3842</epage><pages>3838-3842</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>Loading metal cocatalyst on semiconductor nanoparticles is a general strategy to enhance photocatalytic efficiency, while the consensus of selecting metal cocatalyst matching with semiconductor is still unclear. Herein, we investigated the charge transfer and separation efficiency between ZnO and cocatalysts Ag, Au, and Pt nanoparticles respectively using ultrafast mid‐IR transient absorption spectroscopy. We found that Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer from ZnO to metal. Thus Ohmic contact would be better than Schottky contact. Since photocatalytic efficiency is also determined by chemical catalytic efficiency, we proposed a dual metal cocatalyst strategy for improving the overall photocatalytic efficiency, with the inner metal forming Ohmic contact for efficient charge separation and shuttling electrons and the outer‐layer metal cocatalyst for optimizing the chemical reactivity. Photocatalysis: Interfacial charge transfer and separation efficiencies for ZnO nanoparticles and metal cocatalysts Ag, Au and Pt respectively were investigated by ultrafast mid‐IR transient absorption spectroscopy. Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer. A dual metal cocatalyst strategy is proposed for selection of the metal catalysis with the inner metal for efficient charge transfer and electron shuttle, and the outer‐layer metal for the optimal chemical reactivity.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/cctc.202000280</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0423-2266</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2020-08, Vol.12 (15), p.3838-3842
issn 1867-3880
1867-3899
language eng
recordid cdi_webofscience_primary_000529641000001CitationCount
source Access via Wiley Online Library
subjects Charge efficiency
Charge transfer
Chemistry
Chemistry, Physical
Contact resistance
Efficiency
Electron transfer
Gold
Infrared spectroscopy
Metal forming
Metal-semiconductor heterojunction
Nanoparticles
Noble metals
Photocatalysis
Physical Sciences
Platinum
Science & Technology
Separation
Silver
Ultrafast charge transfer
Zinc oxide
Zinc oxide (ZnO)
title Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rules%20for%20Selecting%20Metal%20Cocatalyst%20Based%20on%20Charge%20Transfer%20and%20Separation%20Efficiency%20between%20ZnO%20Nanoparticles%20and%20Noble%20Metal%20Cocatalyst%20Ag/%20Au/%20Pt&rft.jtitle=ChemCatChem&rft.au=Liu,%20Qianxia&rft.date=2020-08-06&rft.volume=12&rft.issue=15&rft.spage=3838&rft.epage=3842&rft.pages=3838-3842&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202000280&rft_dat=%3Cproquest_webof%3E2430941229%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430941229&rft_id=info:pmid/&rfr_iscdi=true