Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt

Loading metal cocatalyst on semiconductor nanoparticles is a general strategy to enhance photocatalytic efficiency, while the consensus of selecting metal cocatalyst matching with semiconductor is still unclear. Herein, we investigated the charge transfer and separation efficiency between ZnO and co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2020-08, Vol.12 (15), p.3838-3842
Hauptverfasser: Liu, Qianxia, Wang, Zhuan, Chen, Hailong, Wang, Hao‐Yi, Song, Hui, Ye, Jinhua, Weng, Yuxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Loading metal cocatalyst on semiconductor nanoparticles is a general strategy to enhance photocatalytic efficiency, while the consensus of selecting metal cocatalyst matching with semiconductor is still unclear. Herein, we investigated the charge transfer and separation efficiency between ZnO and cocatalysts Ag, Au, and Pt nanoparticles respectively using ultrafast mid‐IR transient absorption spectroscopy. We found that Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer from ZnO to metal. Thus Ohmic contact would be better than Schottky contact. Since photocatalytic efficiency is also determined by chemical catalytic efficiency, we proposed a dual metal cocatalyst strategy for improving the overall photocatalytic efficiency, with the inner metal forming Ohmic contact for efficient charge separation and shuttling electrons and the outer‐layer metal cocatalyst for optimizing the chemical reactivity. Photocatalysis: Interfacial charge transfer and separation efficiencies for ZnO nanoparticles and metal cocatalysts Ag, Au and Pt respectively were investigated by ultrafast mid‐IR transient absorption spectroscopy. Ohmic contact of Ag with ZnO favoring electron transfer and charge separation, while Schottky junction of Pt or Au with ZnO preventing electron transfer. A dual metal cocatalyst strategy is proposed for selection of the metal catalysis with the inner metal for efficient charge transfer and electron shuttle, and the outer‐layer metal for the optimal chemical reactivity.
ISSN:1867-3880
1867-3899
DOI:10.1002/cctc.202000280