Integration of dynamic parameters in the analysis of F-18-FDopa PET imaging improves the prediction of molecular features of gliomas

Purpose F-18-FDopa PET imaging of gliomas is routinely interpreted with standardized uptake value (SUV)-derived indices. This study aimed to determine the added value of dynamic F-18-FDopa PET parameters for predicting the molecular features of newly diagnosed gliomas. Methods We retrospectively inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of nuclear medicine and molecular imaging 2020-06, Vol.47 (6), p.1381-1390
Hauptverfasser: Ginet, Merwan, Zaragori, Timothee, Marie, Pierre-Yves, Roch, Veronique, Gauchotte, Guillaume, Rech, Fabien, Blonski, Marie, Lamiral, Zohra, Taillandier, Luc, Imbert, Laetitia, Verger, Antoine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose F-18-FDopa PET imaging of gliomas is routinely interpreted with standardized uptake value (SUV)-derived indices. This study aimed to determine the added value of dynamic F-18-FDopa PET parameters for predicting the molecular features of newly diagnosed gliomas. Methods We retrospectively included 58 patients having undergone an F-18-FDopa PET for establishing the initial diagnosis of gliomas, whose molecular features were additionally characterized according to the WHO 2016 classification. Dynamic parameters, involving time-to-peak (TTP) values and curve slopes, were tested for the prediction of glioma types in addition to current static parameters, i.e., tumor-to-normal brain or tumor-to-striatum SUV ratios and metabolic tumor volume (MTV). Results There were 21 IDH mutant without 1p/19q co-deletion (IDH+/1p19q-) gliomas, 16 IDH mutants with 1p/19q co-deletion (IDH+/1p19q+) gliomas, and 21 IDH wildtype (IDH-) gliomas. Dynamic parameters enabled differentiating the gliomas according to these molecular features, whereas static parameters did not. In particular, a longer TTP was the single best independent predictor for identifying (1) IDH mutation status (area under the curve (AUC) of 0.789, global accuracy of 74% for the criterion of a TTP >= 5.4 min) and (2) 1p/19q co-deletion status (AUC of 0.679, global accuracy of 69% for the criterion of a TTP >= 6.9 min). Moreover, the TTP from IDH- gliomas was significantly shorter than those from both IDH+/1p19q- and IDH+/1p19q+ (p
ISSN:1619-7070
1619-7089
DOI:10.1007/s00259-019-04509-y