Multiple Interactive Attention Networks for Aspect-Based Sentiment Classification

Aspect-Based (also known as aspect-level) Sentiment Classification (ABSC) aims at determining the sentimental tendency of a particular target in a sentence. With the successful application of the attention network in multiple fields, attention-based ABSC has aroused great interest. However, most of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-03, Vol.10 (6), p.2052, Article 2052
Hauptverfasser: Zhang, Dianyuan, Zhu, Zhenfang, Lu, Qiang, Pei, Hongli, Wu, Wenqing, Guo, Qiangqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aspect-Based (also known as aspect-level) Sentiment Classification (ABSC) aims at determining the sentimental tendency of a particular target in a sentence. With the successful application of the attention network in multiple fields, attention-based ABSC has aroused great interest. However, most of the previous methods are difficult to parallelize, insufficiently obtain, and fuse the interactive information. In this paper, we proposed a Multiple Interactive Attention Network (MIN). First, we used the Bidirectional Encoder Representations from Transformers (BERT) model to pre-process the data. Then, we used the partial transformer to obtain a hidden state in parallel. Finally, we took the target word and the context word as the core to obtain and fuse the interactive information. Experimental results on the different datasets showed that our model was much more effective.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10062052