Use of a Pleurotus ostreatus Complex Cell Wall Extract as Elicitor of Plant Defenses: From Greenhouse to Field Trial

Fungi constitute an abundant source of natural polysaccharides, some of them harboring original structures which can induce responses in mammalian or plant cells. An alkaline extract from the edible mushroom Pleurotus ostreatus has been obtained and called Pleuran complex cell wall extract (CCWE). I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2020-02, Vol.25 (5), p.1094, Article 1094
Hauptverfasser: Faugeron-Girard, Celine, Gloaguen, Vincent, Koci, Rromir, Celerier, Julien, Raynaud, Anais, Moine, Charlotte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fungi constitute an abundant source of natural polysaccharides, some of them harboring original structures which can induce responses in mammalian or plant cells. An alkaline extract from the edible mushroom Pleurotus ostreatus has been obtained and called Pleuran complex cell wall extract (CCWE). It consists of a glucan-peptide complex whose components fall in a quite broad range of molecular weights, from 30 to 80 kDa. Pleuran extract has been tested on cultivated plants in laboratory conditions and also during field trial for its capacity to stimulate plant defenses in response to pathogen attack. Following Pleuran CCWE treatment, enhanced levels of various biochemical markers associated with plant responses have been observed, including enzymatic activities (e.g., peroxidase) or expression of some pathogenesis-related genes. In addition, during field experiments, we have noticed significant reductions in disease symptom levels in relation to different plant/pathogen systems (wheat/septoria, vine/mildew). These results confirmed that Pleuran CCWE could be used as an elicitor of plant defenses and could help in reducing pesticide applications against plant pathogens.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules25051094