LRRpredictor-A New LRR Motif Detection Method for Irregular Motifs of Plant NLR Proteins Using an Ensemble of Classifiers

Leucine-rich-repeats (LRRs) belong to an archaic procaryal protein architecture that is widely involved in protein-protein interactions. In eukaryotes, LRR domains developed into key recognition modules in many innate immune receptor classes. Due to the high sequence variability imposed by recogniti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2020-03, Vol.11 (3), p.286, Article 286
Hauptverfasser: Martin, Eliza C., Sukarta, Octavina C. A., Spiridon, Laurentiu, Grigore, Laurentiu G., Constantinescu, Vlad, Tacutu, Robi, Goverse, Aska, Petrescu, Andrei-Jose
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Leucine-rich-repeats (LRRs) belong to an archaic procaryal protein architecture that is widely involved in protein-protein interactions. In eukaryotes, LRR domains developed into key recognition modules in many innate immune receptor classes. Due to the high sequence variability imposed by recognition specificity, precise repeat delineation is often difficult especially in plant NOD-like Receptors (NLRs) notorious for showing far larger irregularities. To address this problem, we introduce here LRRpredictor, a method based on an ensemble of estimators designed to better identify LRR motifs in general but particularly adapted for handling more irregular LRR environments, thus allowing to compensate for the scarcity of structural data on NLR proteins. The extrapolation capacity tested on a set of annotated LRR domains from six immune receptor classes shows the ability of LRRpredictor to recover all previously defined specific motif consensuses and to extend the LRR motif coverage over annotated LRR domains. This analysis confirms the increased variability of LRR motifs in plant and vertebrate NLRs when compared to extracellular receptors, consistent with previous studies. Hence, LRRpredictor is able to provide novel insights into the diversification of LRR domains and a robust support for structure-informed analyses of LRRs in immune receptor functioning.
ISSN:2073-4425
2073-4425
DOI:10.3390/genes11030286