Nonparametric Multivariate Adaptive Regression Splines Models for Investigating Lane-Changing Gap Acceptance Behavior Utilizing Strategic Highway Research Program 2 Naturalistic Driving Data

Gap acceptance is one of the crucial components of lane-changing analysis and an important parameter in microsimulation modeling. Drivers’ poor gap judgment, and failure to accept a necessary safety gap, make it one of the major causes of lane-changing crashes on roadways. Several studies have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research record 2020-05, Vol.2674 (5), p.223-238, Article 0361198120914293
Hauptverfasser: Das, Anik, Khan, Md Nasim, Ahmed, Mohamed M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gap acceptance is one of the crucial components of lane-changing analysis and an important parameter in microsimulation modeling. Drivers’ poor gap judgment, and failure to accept a necessary safety gap, make it one of the major causes of lane-changing crashes on roadways. Several studies have been conducted to investigate lane-changing gap acceptance behavior; however, very few studies examined the behavior in complex real-world situations, such as in naturalistic settings. This study examined lane-changing gap acceptance behavior from the big Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study (NDS) datasets using a nonparametric multivariate adaptive regression splines (MARS) approach to better understand the complex effects of different factors in gap acceptance behavior. The study developed a unique methodology to identify lane-changing events of the non-NDS-vehicles using the front-mounted radar data from NDS vehicles and extract necessary parameters for analyzing gap acceptance behavior. In addition, surrogate measures of safety, that is, time-to-collision (TTC), was utilized to understand the impact of lane-changing on the NDS following vehicle safety. Moreover, different distributions of gap acceptance were fitted to identify the trend of gap acceptance behavior. The results from the MARS model revealed that different factors including relative speed between lane-changing vehicle (LCV) and lead vehicle (LV)/following vehicle (FV), traffic conditions, acceleration of LCV and FV, and roadway geometric characteristics have significant effects on gap acceptance behavior. The results of this study have significant implications, which could be used in microsimulation model calibration and safety improvements in connected and autonomous vehicles (CAV).
ISSN:0361-1981
2169-4052
DOI:10.1177/0361198120914293