Superior surface protection governed by optimized interface characteristics in WC/DLC multilayer coating

This paper introduces a highly durable functional multilayer coating (FMCs) with outstanding mechanical properties using comprehensive design principles. Architecting the layers with degrees of freedom in structure and thickness is the core idea to design WC/DLC FMC. This concept seeks to combine ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2020-03, Vol.385, p.125446, Article 125446
Hauptverfasser: Nemati, Narguess, Penkov, Oleksiy V., Kim, Dae-Eun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a highly durable functional multilayer coating (FMCs) with outstanding mechanical properties using comprehensive design principles. Architecting the layers with degrees of freedom in structure and thickness is the core idea to design WC/DLC FMC. This concept seeks to combine advantages of superior properties of single-layer metal, ceramic, and carbon coatings, without compromising with weaknesses. This research creates a pioneering integration platform that combines the current understanding of materials properties across scale and optimization of interfacial characteristics of ultra-thin films through the combination of theoretical and experimental studies. The aim of this study is to introduce a significant improvement for multilayer sustainability of properties and mechanical strength such as ultra-high hardness (>45 GPa) combined with high elasticity (H/E ~0.15), creep deformation recovery and ultra-durability in macro-scale wear (wear rate
ISSN:0257-8972
1879-3347
DOI:10.1016/j.surfcoat.2020.125446