Gold-Incorporated Cobalt Phosphide Nanoparticles on Nitrogen-Doped Carbon for Enhanced Hydrogen Evolution Electrocatalysis

Transition metal phosphides (TMPs) demonstrate great potential for hydrogen evolution reaction (HER) electrocatalysis, but their activities need further improvement. Herein we report a novel Au incorporation strategy to boost the HER catalytic performance of CoP. As a proof of concept, heterostructu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-04, Vol.12 (14), p.16548-16556
Hauptverfasser: Wang, Xiaoyan, Fei, Yang, Li, Wei, Yi, Lingya, Feng, Bomin, Pan, Yixiang, Hu, Weihua, Li, Chang Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transition metal phosphides (TMPs) demonstrate great potential for hydrogen evolution reaction (HER) electrocatalysis, but their activities need further improvement. Herein we report a novel Au incorporation strategy to boost the HER catalytic performance of CoP. As a proof of concept, heterostructured Au/CoP nanoparticles dispersed on nitrogen-doped carbon with unique porosity, denoted as Au/CoP@NC-3, are synthesized by thermal treatment of Au-nanoparticle-incorporated ZIF-67 precursor. It shows excellent HER activity as well as good durability in acidic and alkaline condition, respectively, greatly outperforming its Au-free analogue, namely, CoP@NC. In-depth analysis suggests that the improved HER activity of Au/CoP@NC-3 is attributed to the presence of Au nanoparticles which enlarge the electrochemical active surface areas and adjust the electronic structure of active CoP species to enhance the water adsorption and optimize H adsorption for the accelerated HER process.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c02076