Linear operators with infinite entropy
We examine the chaotic behavior of certain continuous linear operators on infinite-dimensional Banach spaces, and provide several equivalent characterizations of when these operators have infinite topological entropy. For example, it is shown that infinite topological entropy is equivalent to non-ze...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2020-07, Vol.487 (2), p.123981, Article 123981 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We examine the chaotic behavior of certain continuous linear operators on infinite-dimensional Banach spaces, and provide several equivalent characterizations of when these operators have infinite topological entropy. For example, it is shown that infinite topological entropy is equivalent to non-zero topological entropy for translation operators on weighted Lebesgue function spaces. In particular, finite non-zero entropy is impossible for this class of operators, which answers a question raised by Yin and Wei. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2020.123981 |