Linear operators with infinite entropy

We examine the chaotic behavior of certain continuous linear operators on infinite-dimensional Banach spaces, and provide several equivalent characterizations of when these operators have infinite topological entropy. For example, it is shown that infinite topological entropy is equivalent to non-ze...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2020-07, Vol.487 (2), p.123981, Article 123981
Hauptverfasser: Brian, Will, Kelly, James P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine the chaotic behavior of certain continuous linear operators on infinite-dimensional Banach spaces, and provide several equivalent characterizations of when these operators have infinite topological entropy. For example, it is shown that infinite topological entropy is equivalent to non-zero topological entropy for translation operators on weighted Lebesgue function spaces. In particular, finite non-zero entropy is impossible for this class of operators, which answers a question raised by Yin and Wei.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2020.123981