The Spatiotemporal Variability of Temperature and Precipitation Over the Upper Indus Basin: An Evaluation of 15 Year WRF Simulations

Investigating the trends in the major climatic variables over the Upper Indus Basin (UIB) region is difficult for many reasons, including highly complex terrain with heterogeneous spatial precipitation patterns and a scarcity of gauge stations. The Weather Research and Forecasting (WRF) model was ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2020-03, Vol.10 (5), p.1765, Article 1765
Hauptverfasser: Dars, Ghulam Hussain, Strong, Courtenay, Kochanski, Adam K., Ansari, Kamran, Ali, Syed Hammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Investigating the trends in the major climatic variables over the Upper Indus Basin (UIB) region is difficult for many reasons, including highly complex terrain with heterogeneous spatial precipitation patterns and a scarcity of gauge stations. The Weather Research and Forecasting (WRF) model was applied to simulate the spatiotemporal variability of precipitation and temperature over the Indus Basin from 2000 through 2015 with boundary conditions derived from the Climate Forecast System Reanalysis (CFSR) data. The WRF model was configured with three nested domains (d01-d03) with horizontal resolutions increasing inward from 36 km to 12 km to 4 km horizontal resolution, respectively. These simulations were a continuous run with a spin-up year (i.e., 2000) to equilibrate the soil moisture, snow cover, and temperature at the beginning of the simulation. The simulations were then compared with TRMM and station data for the same time period using root mean squared error (RMSE), percentage bias (PBIAS), mean bias error (MBE), and the Pearson correlation coefficient. The results showed that the precipitation and temperature simulations were largely improved from d01 to d03. However, WRF tended to overestimate precipitation and underestimate temperature in all domains. This study presents high-resolution climatological datasets, which could be useful for the study of climate change and hydrological processes in this data-sparse region.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10051765