Tectal CRFR1 receptor involvement in avoidance and approach behaviors in the South African clawed frog, Xenopus laevis

Animals in the wild must balance food intake with vigilance for predators in order to survive. The optic tectum plays an important role in the integration of external (predators) and internal (energy status) cues related to predator defense and prey capture. However, the role of neuromodulators invo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hormones and behavior 2020-04, Vol.120, p.104707-104707, Article 104707
Hauptverfasser: Prater, Christine M., Harris, Breanna N., Carr, James A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Animals in the wild must balance food intake with vigilance for predators in order to survive. The optic tectum plays an important role in the integration of external (predators) and internal (energy status) cues related to predator defense and prey capture. However, the role of neuromodulators involved in tectal sensorimotor processing is poorly studied. Recently we showed that tectal CRFR1 receptor activation decreases food intake in the South African clawed frog, Xenopus laevis, suggesting that CRF may modulate food intake/predator avoidance tradeoffs. Here we use a behavioral assay modeling food intake and predator avoidance to test the role of CRFR1 receptors and energy status in this tradeoff. We tested the predictions that 1) administering the CRFR1 antagonist NBI-27914 via the optic tecta will increase food intake and feeding-related behaviors in the presence of a predator, and 2) that prior food deprivation, which lowers tectal CRF content, will increase food intake and feeding-related behaviors in the presence of a predator. Pre-treatment with NBI-27914 did not prevent predator-induced reductions in food intake. Predator exposure altered feeding-related behaviors in a predictable manner. Pretreatment with NBI-27914 reduced the response of certain behaviors to a predator but also altered behaviors irrelevant of predator presence. Although 1-wk of food deprivation altered some non-feeding behaviors related to energy conservation strategy, food intake in the presence of a predator was not altered by prior food deprivation. Collectively, our data support a role for tectal CRFR1 in modulating discrete behavioral responses during predator avoidance/foraging tradeoffs. •Predator presence decreased food intake and altered behavior.•Blocking tectal CRFR1 altered particular anti-predator behavior.•Food deprivation did not alter food intake.•Food deprivation altered behavior consistent with an energy conservation strategy.
ISSN:0018-506X
1095-6867
DOI:10.1016/j.yhbeh.2020.104707