Multi-scale mining of kinematic distributions with wavelets

Typical LHC analyses search for local features in kinematic distributions. Assumptions about anomalous patterns limit them to a relatively narrow subset of possible signals. Wavelets extract information from an entire distribution and decompose it at all scales, simultaneously searching for features...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SciPost physics 2020-03, Vol.8 (3), p.043, Article 043
Hauptverfasser: Lillard, Ben G., Plehn, Tilman, Romero, Alexis, Tait, Tim M. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Typical LHC analyses search for local features in kinematic distributions. Assumptions about anomalous patterns limit them to a relatively narrow subset of possible signals. Wavelets extract information from an entire distribution and decompose it at all scales, simultaneously searching for features over a wide range of scales. We propose a systematic wavelet analysis and show how bumps, bump-dip combinations, and oscillatory patterns are extracted. Our kinematic wavelet analysis kit KWAK provides a publicly available framework to analyze and visualize general distributions.
ISSN:2542-4653
2542-4653
DOI:10.21468/SciPostPhys.8.3.043