Upper Tail Bounds for Stars

For r >= 2, let X be the number of r-armed stars K-1,K-r in the binomial random graph G(n,p). We study the upper tail P(X >= (1 + epsilon)EX), and establish exponential bounds which are best possible up to constant factors in the exponent (for the special case of stars K-1,K-r this solves a pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2020-03, Vol.27 (1), Article 1
Hauptverfasser: Sileikis, Matas, Warnke, Lutz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For r >= 2, let X be the number of r-armed stars K-1,K-r in the binomial random graph G(n,p). We study the upper tail P(X >= (1 + epsilon)EX), and establish exponential bounds which are best possible up to constant factors in the exponent (for the special case of stars K-1,K-r this solves a problem of Janson and Rucinski, and confirms a conjecture by DeMarco and Kahn). In contrast to the widely accepted standard for the upper tail problem, we do not restrict our attention to constant epsilon, but also allow for epsilon >= n(-alpha) deviations.
ISSN:1077-8926
1077-8926
DOI:10.37236/8493