Effects of hydrogen ion implantation dose on physical and electrical properties of Ge-on-insulator layers fabricated by the smart-cut process

We experimentally evaluate the influence of a hydrogen ion implantation (I/I) dose on the physical and electrical properties of Ge-on-insulator (GOI) films fabricated by the smart-cut process with the two doses of 1 × 1017 cm−2 and 4 × 1016 cm−2. It is found that thermal annealing is effective in im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2020-01, Vol.10 (1), p.015045-015045-7, Article 015045
Hauptverfasser: Lim, C.-M., Zhao, Z., Sumita, K., Toprasertpong, K., Takenaka, M., Takagi, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We experimentally evaluate the influence of a hydrogen ion implantation (I/I) dose on the physical and electrical properties of Ge-on-insulator (GOI) films fabricated by the smart-cut process with the two doses of 1 × 1017 cm−2 and 4 × 1016 cm−2. It is found that thermal annealing is effective in improving the crystallinity of the GOI layers and that the defect-less GOI layers can be realized under the optimized annealing temperature of 550 °C, irrespective of the I/I dose. However, the reduction of Hall hole mobility is observed in GOI substrates fabricated with higher I/I dose condition. This mobility reduction is not observed for GOI p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) under the back-gate operation. On the other hand, n-channel MOSFETs fabricated on the smart-cut GOI substrates with As-doped S/D junctions are found to exhibit the higher effective electron mobility for the low I/I dose than that for the high I/I dose. As a result, it can be concluded that the high H+ I/I dose of 1 × 1017 cm−2 causes the degradation in the mobility of smart-cut GOI substrates and that the choice of the hydrogen I/I dose is important in the fabrication of GOI wafers for MOSFET applications.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.5132881