A Validated Spectrofluorimetric Method for the Determination of Moxifloxacin in Its Pure Form, Pharmaceutical Preparations, and Biological Samples
This research work presents a simple, sensitive, selective, economic, and widely applicable and interferences-free spectrofluorimetric method estimating moxifloxacin in the pure form, commercial formulations and biological samples. The method is based on the reaction of moxifloxacin with Ce(IV) in a...
Gespeichert in:
Veröffentlicht in: | Analytical Sciences 2020/03/10, Vol.36(3), pp.361-366 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research work presents a simple, sensitive, selective, economic, and widely applicable and interferences-free spectrofluorimetric method estimating moxifloxacin in the pure form, commercial formulations and biological samples. The method is based on the reaction of moxifloxacin with Ce(IV) in an acidic medium to generate fluorescent active species Ce(III). The excitation and emission of the fluorescent species are 250 and 362 nm, respectively. Different variables that might influence the oxidation of moxifloxacin, including the Ce(IV) concentration and volume, the effect of temperature and the heating time, the type of acids and its concentration were analyzed and boosted. The linearity was observed in the concentration range of 0.2 – 5.0 μg mL−1 with a correlation coefficient of 0.9991. The limit of detection and the limit of quantification were calculated and observed to be 0.016 and 0.056 μg mL−1 respectively. The effects of the common excipients and some co-administrated drugs usually used in the determination of moxifloxacin were investigated, and no interferences were noted. The planned method has been successfully practical for the analysis of moxifloxacin in its pure form, in pharmaceutical products and in biological samples. The obtained percent recoveries ranged from 95.50 to 101.37% for pharmaceutical products and from 95.15 to 103.18% for human blood plasma and urine. |
---|---|
ISSN: | 0910-6340 1348-2246 |
DOI: | 10.2116/analsci.19P370 |