Age of metamorphism and deformation in the Montagne Noire dome (French Massif Central): Tapping into the memory of fine-grained gneisses using monazite U-Th-Pb geochronology
Recent work has revealed that the Montagne Noire dome, located in the foreland of the Variscan belt (French Massif Central), contains a record of nearly coeval, late Variscan eclogitization and migmatization. Given these new results, it is important to understand the chronology of events that produc...
Gespeichert in:
Veröffentlicht in: | Tectonophysics 2020-02, Vol.776, p.228316, Article 228316 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent work has revealed that the Montagne Noire dome, located in the foreland of the Variscan belt (French Massif Central), contains a record of nearly coeval, late Variscan eclogitization and migmatization. Given these new results, it is important to understand the chronology of events that produced high-grade metamorphism and exhumation. Using U-Th-Pb dating of monazite, this study confirms ages of ~315–300 Ma for high-T metamorphism in the augen gneiss that makes up a large fraction of the Montagne Noire dome, and documents for the first time ~295 Ma monazite ages in compositionally varied fine-grained gneisses that form folded continuous layers within the core of the dome. The fine-grained gneiss layers are intensely sheared and are interpreted to have localized late, high-T deformation in the core of the dome. These sheared fine-grained gneisses form a network of shear zones that were kinematically linked to the extensional and strike-slip deformation zones that exhumed the Montagne Noire dome in a pull-apart (s.l.) domain. Continued deformation-recrystallization and fluid flow within these shear zones likely drove rejuvenation of monazite for ~5 million years after much of the melt had crystallized in the Montagne Noire dome.
[Display omitted]
•Monazite in fine-grained gneisses records late stages of high-T deformation.•These late stages are related to exhumation of the Montagne Noire dome.•Monazite U-Th-Pb dating of fine-grained gneisses yields ~295 Ma ages.•Fine-grained gneisses are up to ~5 Myr younger than the latest melt crystallization.•Ages record localized, solid-state deformation, recrystallization, and fluid flow. |
---|---|
ISSN: | 0040-1951 1879-3266 |
DOI: | 10.1016/j.tecto.2019.228316 |