Blood Stasis Imaging Predicts Cerebral Microembolism during Acute Myocardial Infarction

Cardioembolic stroke is a major source of mortality and disability worldwide. The authors hypothesized that quantitative characterization of intracardiac blood stasis may be useful to determine cardioembolic risk in order to personalize anticoagulation therapy. The aim of this study was to assess th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society of Echocardiography 2020-03, Vol.33 (3), p.389-398
Hauptverfasser: Delgado-Montero, Antonia, Martinez-Legazpi, Pablo, Desco, M. Mar, Rodríguez-Pérez, Daniel, Díaz-Otero, Fernando, Rossini, Lorenzo, Pérez del Villar, Candelas, Rodríguez-González, Elena, Chazo, Christian, Benito, Yolanda, Flores, Oscar, Antoranz, José Carlos, Fernández-Avilés, Francisco, del Álamo, Juan C., Bermejo, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cardioembolic stroke is a major source of mortality and disability worldwide. The authors hypothesized that quantitative characterization of intracardiac blood stasis may be useful to determine cardioembolic risk in order to personalize anticoagulation therapy. The aim of this study was to assess the relationship between image-based metrics of blood stasis in the left ventricle and brain microembolism, a surrogate marker of cardiac embolism, in a controlled animal experimental model of acute myocardial infarction (AMI). Intraventricular blood stasis maps were derived from conventional color Doppler echocardiography in 10 pigs during anterior AMI induced by sequential ligation of the mid and proximal left anterior descending coronary artery (AMI-1 and AMI-2 phases). From these maps, indices of global and local blood stasis were calculated, such as the average residence time and the size and ratio of contact with the endocardium of blood regions with long residence times. The incidence of brain microemboli (high-intensity transient signals [HITS]) was monitored using carotid Doppler ultrasound. HITS were detected in 0%, 50%, and 90% of the animals at baseline and during AMI-1 and AMI-2 phases, respectively. The average residence time of blood in the left ventricle increased in parallel. The residence time performed well to predict microemboli (C-index = 0.89, 95% CI, 0.75–1.00) and closely correlated with the number of HITS (R = 0.87, P 
ISSN:0894-7317
1097-6795
DOI:10.1016/j.echo.2019.09.020