A Version of the Stokes Theorem Using Test Curves
We prove that a parametric Lipschitz surface of codimension 1 in a smooth manifold induces a boundary in the sense of currents (roughly speaking, surrounds a “domain” with an eventual multiplicity and together with it forms a pair for the Stokes theorem) if and only if it passes a test in terms of c...
Gespeichert in:
Veröffentlicht in: | Indiana University mathematics journal 2020-01, Vol.69 (1), p.295-330 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that a parametric Lipschitz surface of codimension 1 in a smooth manifold induces a boundary in the sense of currents (roughly speaking, surrounds a “domain” with an eventual multiplicity and together with it forms a pair for the Stokes theorem) if and only if it passes a test in terms of crossing the surface by “almost all” curves. We use the AM-modulus recently introduced in [22] to measure the exceptional family of curves. |
---|---|
ISSN: | 0022-2518 1943-5258 |
DOI: | 10.1512/iumj.2020.69.8389 |