A Version of the Stokes Theorem Using Test Curves

We prove that a parametric Lipschitz surface of codimension 1 in a smooth manifold induces a boundary in the sense of currents (roughly speaking, surrounds a “domain” with an eventual multiplicity and together with it forms a pair for the Stokes theorem) if and only if it passes a test in terms of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indiana University mathematics journal 2020-01, Vol.69 (1), p.295-330
Hauptverfasser: Exnerová, Vendula Honzlová, Malý, Jan, Martio, Olli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that a parametric Lipschitz surface of codimension 1 in a smooth manifold induces a boundary in the sense of currents (roughly speaking, surrounds a “domain” with an eventual multiplicity and together with it forms a pair for the Stokes theorem) if and only if it passes a test in terms of crossing the surface by “almost all” curves. We use the AM-modulus recently introduced in [22] to measure the exceptional family of curves.
ISSN:0022-2518
1943-5258
DOI:10.1512/iumj.2020.69.8389