RP-HPLC and UV Spectrophotometric Analysis of Paracetamol, Ibuprofen, and Caffeine in Solid Pharmaceutical Dosage Forms by Derivative, Fourier, and Wavelet Transforms: A Comparison Study

Different signal-transforming algorithms were applied for UV spectrophotometric analysis of paracetamol, ibuprofen, and caffeine in ternary mixtures. Phosphate buffer pH 7.2 was used as the spectrophotometric solvent. Severe overlapping spectra could be resolved into individual bands in the range of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of analytical methods in chemistry 2020, Vol.2020 (2020), p.1-13, Article 8107571
Hauptverfasser: Nguyen Mai, Huong, Dong Thi Ha, Ly, Truong Thi Thu, Huong, Hoang, Vu Dang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Different signal-transforming algorithms were applied for UV spectrophotometric analysis of paracetamol, ibuprofen, and caffeine in ternary mixtures. Phosphate buffer pH 7.2 was used as the spectrophotometric solvent. Severe overlapping spectra could be resolved into individual bands in the range of wavelengths 200–300 nm by using Savitzky–Golay smoothing and differentiation, trigonometric Fourier series, and mother wavelet functions (i.e., sym6, haar, coif3, and mexh). To optimize spectral recoveries, the concentration of various types of divisors (single, double, and successive) was tested. The developed spectrophotometric methods showed linearity over the ranges 20–40 mg/L for paracetamol, 12–32 mg/L for ibuprofen, and 1–3.5 mg/L for caffeine (R2 > 0.990). They could be successfully applied to the assay and dissolution test of paracetamol, ibuprofen, and caffeine in their combined tablets and capsules, with accuracy (99.1–101.5% recovery) and precision (RSD 0.05, suggesting possible interchange between UV spectrophotometric and HPLC methods for routine analysis of paracetamol, ibuprofen, and caffeine in their solid pharmaceutical dosage forms.
ISSN:2090-8865
2090-8873
DOI:10.1155/2020/8107571