Energy-Efficient Robust Control for Direct Drive and Energy Recuperation Hydraulic Servo System

During the vertical cyclic actuation process of heavy materials handling, the gravitational potential energy will be converted to heat in the form of throttle in the traditional hydraulic system. Therefore, large energy dissipation is inevitable is this process. In order to achieve energy recuperati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2020, Vol.2020 (2020), p.1-19, Article 6959273
Hauptverfasser: Wang, Weiping, Zhao, Jiyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During the vertical cyclic actuation process of heavy materials handling, the gravitational potential energy will be converted to heat in the form of throttle in the traditional hydraulic system. Therefore, large energy dissipation is inevitable is this process. In order to achieve energy recuperation, as well as precise trajectory tracking, a direct drive and energy recuperation system is developed. To be specific, the function of direct drive and energy recovery is realized via the three-chamber actuator and a hydraulic accumulator. Moreover, the optimized parameters are obtained by the simulated annealing algorithm. To further reduce the energy consumption, the variable supply pressure control circuit is introduced into the system. Furthermore, the prescribed tracking performance is guaranteed by the proposed robust controller. To compensate for the uncertainties, both in the variable supply pressure control circuit and the robust controller, the RBF neural network is employed to approximate the unknown function. The presented approach theoretically possesses the ability to minimize the energy consumption while maintaining satisfied tracking accuracy. The results demonstrate that the proposed approach can save nearly 90 percent of the energy, and the maximum tracking error is 2 mm.
ISSN:1076-2787
1099-0526
DOI:10.1155/2020/6959273