Catalytic removal of toluene over manganese oxide-based catalysts: a review
It is necessary to control the emissions of toluene, which is hazardous to both human health and the atmosphere environment and has been classified as a priority pollutant. Manganese oxide-based (Mn-based) catalysts have received increased attention due to their high catalytic performance, good phys...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2020, Vol.27 (3), p.2482-2501 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is necessary to control the emissions of toluene, which is hazardous to both human health and the atmosphere environment and has been classified as a priority pollutant. Manganese oxide-based (Mn-based) catalysts have received increased attention due to their high catalytic performance, good physicochemical characteristic, availability in various crystal structures and morphologies, and being environmentally friendly and low cost. These catalysts can be classified into five categories, namely single manganese oxide, Mn-based composite oxides, Mn-based special oxides, supported Mn-based oxides, and Mn-based monoliths. This review focused on the recent progress on the five types of Mn-based catalysts for catalytic removal of toluene at low temperature and further systematically summarized the strategies improving catalysts, including improving synthetic methods, incorporating MnO
x
with other metal oxides, depositing Mn-based oxides on proper supports, and tuning the supports. Moreover, the effect of coexisting components, the reaction kinetics, and the oxidation mechanisms toward the removal of toluene were also discussed. Finally, the future research direction of this field was presented. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-019-07037-2 |