Representing Systems of Dilations and Translations in Symmetric Function Spaces

Let X be an arbitrary separable symmetric function space on [0, 1]. By using a combination of the frame approach and the notion of the multiplicator space M ( X ) of X with respect to the tensor product, we investigate the problem when the sequence of dyadic dilations and translations of a function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2020-02, Vol.26 (1), Article 13
Hauptverfasser: Astashkin, Sergey V., Terekhin, Pavel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be an arbitrary separable symmetric function space on [0, 1]. By using a combination of the frame approach and the notion of the multiplicator space M ( X ) of X with respect to the tensor product, we investigate the problem when the sequence of dyadic dilations and translations of a function f ∈ X is a representing system in the space X . The main result reads that this holds whenever ∫ 0 1 f ( t ) d t ≠ 0 and f ∈ M ( X ) . Moreover, the condition f ∈ M ( X ) turns out to be sharp in a certain sense. In particular, we prove that a decreasing nonnegative function f ,  f ≠ 0 , from a Lorentz space Λ φ generates an absolutely representing system of dyadic dilations and translations in Λ φ if and only if f ∈ M ( Λ φ ) .
ISSN:1069-5869
1531-5851
DOI:10.1007/s00041-019-09715-8