Representing Systems of Dilations and Translations in Symmetric Function Spaces
Let X be an arbitrary separable symmetric function space on [0, 1]. By using a combination of the frame approach and the notion of the multiplicator space M ( X ) of X with respect to the tensor product, we investigate the problem when the sequence of dyadic dilations and translations of a function...
Gespeichert in:
Veröffentlicht in: | The Journal of fourier analysis and applications 2020-02, Vol.26 (1), Article 13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be an arbitrary separable symmetric function space on [0, 1]. By using a combination of the frame approach and the notion of the multiplicator space
M
(
X
)
of
X
with respect to the tensor product, we investigate the problem when the sequence of dyadic dilations and translations of a function
f
∈
X
is a representing system in the space
X
. The main result reads that this holds whenever
∫
0
1
f
(
t
)
d
t
≠
0
and
f
∈
M
(
X
)
.
Moreover, the condition
f
∈
M
(
X
)
turns out to be sharp in a certain sense. In particular, we prove that a decreasing nonnegative function
f
,
f
≠
0
,
from a Lorentz space
Λ
φ
generates an absolutely representing system of dyadic dilations and translations in
Λ
φ
if and only if
f
∈
M
(
Λ
φ
)
. |
---|---|
ISSN: | 1069-5869 1531-5851 |
DOI: | 10.1007/s00041-019-09715-8 |