A quasi-interpolation product integration based method for solving Love’s integral equation with a very small parameter
In this paper, we propose a simple and efficient method for numerically solving the following Love’s integral equation u(x)+∫−11dπd2+(x−t)2u(t)dt=1,x∈[−1,1],where d>0 is a very small parameter. We apply the product integration method based on discrete spline quadratic quasi-interpolation, by cons...
Gespeichert in:
Veröffentlicht in: | Mathematics and computers in simulation 2020-06, Vol.172, p.213-223 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a simple and efficient method for numerically solving the following Love’s integral equation u(x)+∫−11dπd2+(x−t)2u(t)dt=1,x∈[−1,1],where d>0 is a very small parameter. We apply the product integration method based on discrete spline quadratic quasi-interpolation, by considering a new unknown function v(x)=u(x)−12, using the property that the solution u(x) of Love’s integral equation satisfies u(x)→12 for x∈(−1,1), when the parameter d→0+. Numerical results are presented to illustrate the efficiency of the proposed method. |
---|---|
ISSN: | 0378-4754 1872-7166 |
DOI: | 10.1016/j.matcom.2019.12.008 |