A quasi-interpolation product integration based method for solving Love’s integral equation with a very small parameter

In this paper, we propose a simple and efficient method for numerically solving the following Love’s integral equation u(x)+∫−11dπd2+(x−t)2u(t)dt=1,x∈[−1,1],where d>0 is a very small parameter. We apply the product integration method based on discrete spline quadratic quasi-interpolation, by cons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and computers in simulation 2020-06, Vol.172, p.213-223
Hauptverfasser: Barrera, D., El Mokhtari, F., Ibáñez, M.J., Sbibih, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a simple and efficient method for numerically solving the following Love’s integral equation u(x)+∫−11dπd2+(x−t)2u(t)dt=1,x∈[−1,1],where d>0 is a very small parameter. We apply the product integration method based on discrete spline quadratic quasi-interpolation, by considering a new unknown function v(x)=u(x)−12, using the property that the solution u(x) of Love’s integral equation satisfies u(x)→12 for x∈(−1,1), when the parameter d→0+. Numerical results are presented to illustrate the efficiency of the proposed method.
ISSN:0378-4754
1872-7166
DOI:10.1016/j.matcom.2019.12.008