Pharmacokinetic Comparison of Epinastine Using Developed Human Plasma Assays
The purpose of the study was to develop two new methods, HPLC-UV and UPLC-MS/MS, for quantifying epinastine in human plasma and to compare pharmacokinetic (PK) parameters obtained using them. Even in the same sample, there may be a difference in the quantitative value of drug depending on the assay,...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2020-01, Vol.25 (1), p.209, Article 209 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of the study was to develop two new methods, HPLC-UV and UPLC-MS/MS, for quantifying epinastine in human plasma and to compare pharmacokinetic (PK) parameters obtained using them. Even in the same sample, there may be a difference in the quantitative value of drug depending on the assay, so that minor changes in PK parameter values may affect drug dose and usage settings. Therefore, selection and establishment of analytical methods are very important in PK studies of drugs, and a comparison of PK parameters according to analytical methods will be vital. For this study of PK parameter change, we newly developed two methods, HPLC-UV and UPLC-MS/MS, which are most commonly used to quantify epinastine concentrations in human plasma. All developed methods satisfied the international guidelines and criteria for successful application to PK study of 20 mg epinastine hydrochloride tablets after oral administration to twenty-six humans. A comparison of these two methods for in vivo analysis of epinastine was performed for the first time. This comparison study confirmed that different dose and usage settings might be possible based on PK parameters calculated using other analyses. Such changes in calculated PK parameters according to analytical methods would be crucial in the clinic. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules25010209 |