Phenolic Composition Influences the Effectiveness of Fining Agents in Vegan-Friendly Red Wine Production
y Plant proteins have been proposed as an alternative to animal-origin proteins in the wine industry because they are allergen-free and vegan-friendly. The aim of this study was to evaluate the effectiveness of plant proteins as fining agents on red wines with different phenolic composition. Two for...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2019-12, Vol.25 (1), p.120, Article 120 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | y Plant proteins have been proposed as an alternative to animal-origin proteins in the wine industry because they are allergen-free and vegan-friendly. The aim of this study was to evaluate the effectiveness of plant proteins as fining agents on red wines with different phenolic composition. Two formulations for commercially available vegetal proteins (potato and pea origin) were assessed at two doses to modulate the fining treatment to the wine phenolic profile. The results evidenced that fining agents derived from plants have different levels of effectiveness on the removal of phenolic compounds depending on the origin, the formulation used, dose applied, and also wine characteristics. On Nebbiolo wine, the study was particularly significant due to its phenolic composition. One pea-based fining agent had an effect comparable to gelatin (animal origin) on the removal of polymeric flavanols with a minor loss of anthocyanins and therefore better preserving the wine color in terms of intensity and hue. For Primitivo, Montepulciano, and Syrah wines, even though there was a formulation-dependent effect, vegetal proteins gave more balanced reductions in terms of target phenolic compounds contributing to astringency and color perception. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules25010120 |