Comparison of ground‐based and UAV a‐UHF artificial tracer mobility monitoring methods on a braided river
Radio frequency identification (RFID) technologies, which allow wireless detection of individual buried or immersed tracers, represent a step forward in sediment tracking, especially passive integrated transponders (PIT tags) that have been widely used. Despite their widespread adoption in the scien...
Gespeichert in:
Veröffentlicht in: | Earth surface processes and landforms 2020-04, Vol.45 (5), p.1123-1140 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Radio frequency identification (RFID) technologies, which allow wireless detection of individual buried or immersed tracers, represent a step forward in sediment tracking, especially passive integrated transponders (PIT tags) that have been widely used. Despite their widespread adoption in the scientific community, they typically have low efficiency when deployed in river systems with active bedload transport or deep wet channels, attributed to their technical specifications. A recent evaluation of active ultra‐high frequency transponders (a‐UHF tags) assessed their larger detection range and provided a methodology for their geopositioning.
In this study, we test five different survey methods (one including an unmanned aerial vehicle [UAV]) in a sediment tracking study, and compare them in terms of recovery rate, field effort, geopositioning error, and efficiency. We then tested the method on a larger reach following a Q5 flood and performed cross‐comparisons between active and passive RFIDs. The results confirmed that the a‐UHF RFID technology allowed rapid (1.5 h ha−1) survey of a large area ( |
---|---|
ISSN: | 0197-9337 1096-9837 |
DOI: | 10.1002/esp.4777 |