An improved lower bound for the Traveling Salesman constant
Let X1,X2,…,Xn be independent uniform random variables on [0,1]2. Let L(X1,…,Xn) be the length of the shortest Traveling Salesman tour through these points. Beardwood et al (1959) showed that there exists a constant β such that limn→∞L(X1,…,Xn)n=βalmost surely. It was shown that β≥0.625. Building up...
Gespeichert in:
Veröffentlicht in: | Operations research letters 2020-01, Vol.48 (1), p.67-70 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X1,X2,…,Xn be independent uniform random variables on [0,1]2. Let L(X1,…,Xn) be the length of the shortest Traveling Salesman tour through these points. Beardwood et al (1959) showed that there exists a constant β such that limn→∞L(X1,…,Xn)n=βalmost surely. It was shown that β≥0.625. Building upon an approach proposed by Steinerberger (2015), we improve the lower bound to β≥0.6277. |
---|---|
ISSN: | 0167-6377 1872-7468 |
DOI: | 10.1016/j.orl.2019.11.007 |