An improved lower bound for the Traveling Salesman constant

Let X1,X2,…,Xn be independent uniform random variables on [0,1]2. Let L(X1,…,Xn) be the length of the shortest Traveling Salesman tour through these points. Beardwood et al (1959) showed that there exists a constant β such that limn→∞L(X1,…,Xn)n=βalmost surely. It was shown that β≥0.625. Building up...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Operations research letters 2020-01, Vol.48 (1), p.67-70
Hauptverfasser: Gaudio, Julia, Jaillet, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X1,X2,…,Xn be independent uniform random variables on [0,1]2. Let L(X1,…,Xn) be the length of the shortest Traveling Salesman tour through these points. Beardwood et al (1959) showed that there exists a constant β such that limn→∞L(X1,…,Xn)n=βalmost surely. It was shown that β≥0.625. Building upon an approach proposed by Steinerberger (2015), we improve the lower bound to β≥0.6277.
ISSN:0167-6377
1872-7468
DOI:10.1016/j.orl.2019.11.007