Properties of constacyclic codes under the Schur product

For a subspace W of a vector space V of dimension n , the Schur-product space W k for k ∈ N is defined to be the span of all vectors formed by the component-wise multiplication of k vectors in W . It is well known that repeated applications of the Schur product to the subspace W creates subspaces W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2020-06, Vol.88 (6), p.993-1021
Hauptverfasser: Falk, Brett Hemenway, Heninger, Nadia, Rudow, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a subspace W of a vector space V of dimension n , the Schur-product space W k for k ∈ N is defined to be the span of all vectors formed by the component-wise multiplication of k vectors in W . It is well known that repeated applications of the Schur product to the subspace W creates subspaces W , W 2 , W 3 , … whose dimensions are monotonically non-decreasing. However, quantifying the structure and growth of such spaces remains an important open problem with applications to cryptography and coding theory. This paper characterizes how increasing powers of constacyclic codes grow under the Schur product and gives necessary and sufficient criteria for when powers of the code and/or the dimension of the code are invariant under the Schur product.
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-020-00720-3