Organic matter provenance and depositional environment of marine-to-continental mudstones and coals in eastern Ordos Basin, China—Evidence from molecular geochemistry and petrology
Cyclothems, composed of interbedded mudstone, coal and sandstone layers, make up the Taiyuan and Shanxi Formations in the Late Carboniferous to Early Permian in North China under a marine-to-continental depositional environment. The cyclothems act as important fossil energy hosts, such as coalbeds,...
Gespeichert in:
Veröffentlicht in: | International journal of coal geology 2020-01, Vol.217, p.103345, Article 103345 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cyclothems, composed of interbedded mudstone, coal and sandstone layers, make up the Taiyuan and Shanxi Formations in the Late Carboniferous to Early Permian in North China under a marine-to-continental depositional environment. The cyclothems act as important fossil energy hosts, such as coalbeds, hydrocarbon source rocks and unconventional natural gas reservoirs. Organic geochemistry and petrology of mudstones and coals in the Taiyuan and Shanxi Formations in the eastern Ordos Basin were studied to reveal the organic matter sources and paleoenvironments. Total organic carbon (TOC) contents vary from 1.1 wt% (mudstone) to 72.6 wt% (coal). The samples are mainly within the oil window, with the Tmax values ranging from 433 to 469 °C. Organic petrology and source biomarkers indicate that the mudstones were sourced from a mixed organic matter input, and terrigenous organic matter predominates over aquatic organic matter. The coals are mostly sourced by terrigenous organic matter inputs. High concentrations of hopanes argue for a strong bacterial input. Some m/z 217 mass chromatograms have peaks at the hopanes' retention times as a result of high hopane to sterane ratios. These hopane-derived peaks do not interfere the identification of the steranes because the hopanes and the steranes have different retention times. Maturity-dependent biomarkers demonstrate that the samples have been thermally mature, which agree with the Tmax values. Anomalously low C29 20S/(20S + 20R) and C29 ββ/(ββ + αα) sterane ratios are present in all the samples, and are interpreted as due to the terrigenous organic matter input or the coal-related depositional environment. In addition, biomarkers and iron sulfide morphology indicate that the organic matter of the mudstones deposited in a proximal setting with shallow, brackish/fresh water bodies. With consideration of preservation of organic matter, the redox conditions are dysoxic. Redox oscillations resulted in the records of oxic conditions in some samples. Finally, the coals and the mudstones mainly generate gas and have poor oil generative potential.
•Terrigenous organic matter dominates the coals and predominates over aquatic organic matter in the mudstones.•High hopane to sterane ratios result in fragment peaks of hopanes on m/z 217 mass chromatograms.•The fragments derived from the hopanes on m/z 217 mass chromatograms do not interfere identification of the steranes.•The redox condition is dysoxic and the oxic records of geoch |
---|---|
ISSN: | 0166-5162 1872-7840 |
DOI: | 10.1016/j.coal.2019.103345 |