Breaking crown dentine in whole teeth: 3D observations of prevalent fracture patterns following overload
Teeth with intact crowns rarely split or fracture, despite decades of cyclic loading and occasional unexpected overload. This is largely attributed to the presence of dentine, since cracking and fracture of enamel have been frequently reported. Dentine is similar to bone, comprising mineralised coll...
Gespeichert in:
Veröffentlicht in: | Bone (New York, N.Y.) N.Y.), 2020-03, Vol.132, p.115178-115178, Article 115178 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Teeth with intact crowns rarely split or fracture, despite decades of cyclic loading and occasional unexpected overload. This is largely attributed to the presence of dentine, since cracking and fracture of enamel have been frequently reported. Dentine is similar to bone, comprising mineralised collagen fibres as a main constituent. Unlike cortical bone, however, where microcracking and damage arrest are essential for re/modelling and healing, dentine can neither remodel nor regenerate. This raises questions regarding the evolutionary benefits of toughening, leading to uncertainty whether cracks actually appear in dentine in situ. Here we study the notion that circumpulpal dentine is usually protected against, rather than damaged by severe overloads, even though it is not much more massive or stronger than it needs to be. To address this, we examined hydrated teeth still within whole jawbones of freshly-slaughtered skeletally mature pigs, mechanically loaded until fracture. Force displacement curves, optical and electron microscopy combined with 3D microstructural analysis by conventional micro-computed tomography (μCT) revealed mostly brittle fracture paths in circumpulpal crown dentine. Once overload cracks reach this mass of dentine they propagate rapidly along straight paths often parallel to the enamel flanks of the oblong shovel shaped premolars. We find infrequent signs of active toughening mechanisms with minimal crack diversion, ligament bridging and microcracking. When such toughening is seen, it mainly appears in softer dentine in the root, or near the dentine-enamel-junction (DEJ) in mantle dentine. We observed shear bands in overloaded circumpulpal dentine, due to mutual gliding of upper and lower segments. These shear bands are formed as periodic arrays of rotated dentine fragments. The 3D data consistently demonstrate the importance of the layered tooth structure, containing a stiff outer enamel shell, a soft sub-DEJ interlayer and a stiff circumpulpal dentine bulk, for deflecting cracks from splitting the tooth.
•Cracking dentine by occlusally compressing intact teeth is extremely difficult.•When circumpulpal dentine is overloaded, cracks appear brittle and straight.•Such cracks avoid the pulp; they run parallel to the DEJ or outwards, breaking enamel.•Continuous loading following circumpulpal dentine cracking may lead to shear-bands.•Ligament bridging, crack diversion and microcracks are prevalent in softer dentine. |
---|---|
ISSN: | 8756-3282 1873-2763 |
DOI: | 10.1016/j.bone.2019.115178 |