“One for two” strategy to prepare MOF-derived NiCo2S4 nanorods grown on carbon cloth for high-performance asymmetric supercapacitors and efficient oxygen evolution reaction

Metal-organic frameworks (MOFs) have recently emerged as promising hierarchical structured porous materials for high-performance energy storage and conversion devices due to their unique tunable structure and excellent porosity. Herein, we reported a “one for two” strategy to prepare NiCo2S4 nanorod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2020-02, Vol.334, p.135636, Article 135636
Hauptverfasser: Wang, Di, Tian, Liyong, Huang, Jieyu, Li, Dawei, Liu, Jingyan, Xu, Yang, Ke, Huizhen, Wei, Qufu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metal-organic frameworks (MOFs) have recently emerged as promising hierarchical structured porous materials for high-performance energy storage and conversion devices due to their unique tunable structure and excellent porosity. Herein, we reported a “one for two” strategy to prepare NiCo2S4 nanorods directly grown on carbon cloth (NiCo2S4@CC) via a simply modified MOFs-derived approach for high-performance asymmetric supercapacitors and efficient oxygen evolution reaction (OER). As an electrode for asymmetric supercapacitors, the NiCo2S4@CC electrode showed excellent electrochemical performance with high specific capacitance and good rate capability. The asymmetric supercapacitor using NiCo2S4@CC as a cathode electrode and N-doped porous carbon nanosheets grown on the CC (NC@CC) as an anode electrode achieved a superior energy density and power density and a long cycle life. Furthermore, the NiCo2S4@CC exhibited a notable electrocatalytic activity as an electrocatalyst for OER. The remarkable electrochemical performance of as-prepared NiCo2S4@CC could be mainly attributed to its hierarchical structure, sufficient active sites and low metal-anion bond energy after sulfuration reaction. This work could provide an unprecedented opportunity to fabricate functional materials under rational design for various applications.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2020.135636