An improved volumetric method of geothermal resources assessment for shallow ground combining geophysical data

Assessment of available heat capacity in the shallow ground is important to the development of ground source or geothermal heat pumps. A new volumetric method-based approach is proposed for evaluating shallow geothermal potential by combining microtremor survey results. Parameters such as thickness...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2020-01, Vol.145, p.2306-2315
Hauptverfasser: Tian, Baoqing, Kong, Yanlong, Gong, Yulie, Ye, Cantao, Pang, Zhonghe, Wang, Jiyang, Zhang, Dongdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assessment of available heat capacity in the shallow ground is important to the development of ground source or geothermal heat pumps. A new volumetric method-based approach is proposed for evaluating shallow geothermal potential by combining microtremor survey results. Parameters such as thickness of clay and sandy gravel layers can be achieved by processing the microtremor filed data. The study area was divided into grids based on the different exploration sites. The heat present in each small unit was calculated using the revised volumetric method. This division into small units improved the accuracy of assessment of the geothermal potential and helped plot the distribution map of the available heat amount, which indicated optimal locations for development and utilization of shallow geothermal resources. Jimo, China was used as an example to depict the calculation flow. Since the microtremor survey method can identify the thickness of clay, sandy gravel, and fresh bedrock layers in shallow ground, the amount of shallow geothermal resources present above fresh bedrock was calculated. In Jimo, the amount of exploitable geothermal resources, using the traditional volumetric method, was found to be 4.92 × 1012 kJ. The proposed calculation method not only provided a higher corresponding value of 6.96 × 1012 kJ but also showed the regions with the highest potential of shallow geothermal resources. Hence, this approach provides an alternative method for geothermal potential assessment which can be used globally. •A method for the evaluation of geothermal resources in shallow ground is proposed.•Distribution map of available heat capacity was plotted.•The study identified optimal locations to develop geothermal resources.•This approach is effective in improving the accuracy of assessment.•This assessment method combing geophysical data can be used globally.
ISSN:0960-1481
1879-0682
DOI:10.1016/j.renene.2019.08.005