Light-Driven Depolymerization of Native Lignin Enabled by Proton-Coupled Electron Transfer
Here, we report a catalytic, light-driven method for the redox-neutral depolymerization of native lignin biomass at ambient temperature. This transformation proceeds via a proton-coupled electron-transfer (PCET) activation of an alcohol O–H bond to generate a key alkoxy radical intermediate, which t...
Gespeichert in:
Veröffentlicht in: | ACS catalysis 2020-01, Vol.10 (1), p.800-805 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here, we report a catalytic, light-driven method for the redox-neutral depolymerization of native lignin biomass at ambient temperature. This transformation proceeds via a proton-coupled electron-transfer (PCET) activation of an alcohol O–H bond to generate a key alkoxy radical intermediate, which then facilitates the β-scission of a vicinal C–C bond. Notably, this single-step depolymerization is driven solely by visible-light irradiation, requires no stoichiometric chemical reagents, and produces no stoichiometric waste. This method exhibits good efficiency and excellent selectivity for the activation and fragmentation of the β-O-4 linkage in the polymer backbone, even in the presence of numerous other PCET-active functional groups. The feasibility of this protocol in enabling the cleavage of the β-1 linkage in model lignin dimers was also demonstrated. These results provide further evidence that visible-light photocatalysis can serve as a viable method for the direct conversion of lignin biomass into valuable arene feedstocks. |
---|---|
ISSN: | 2155-5435 2155-5435 |
DOI: | 10.1021/acscatal.9b04813 |