Vibration-based breathing crack identification using non-linear intermodulation components under noisy environment
Structural damages can result in non-linear dynamical signatures such as lower and higher order harmonics and signal modulation that can significantly enhance their detection. The conventional spectral analysis is used in most existing vibration-based damage diagnostic techniques to extract these da...
Gespeichert in:
Veröffentlicht in: | Structural health monitoring 2020-01, Vol.19 (1), p.86-104 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Structural damages can result in non-linear dynamical signatures such as lower and higher order harmonics and signal modulation that can significantly enhance their detection. The conventional spectral analysis is used in most existing vibration-based damage diagnostic techniques to extract these damage-sensitive non-linear features. However, the major limitation of using spectral analysis is that the amplitudes of non-linear harmonics are highly sensitive to measurement noise and may mislead the damage diagnostic process. Keeping this in view, we present a new reference-free damage diagnostic technique for fatigue-breathing crack detection, localization and characterization using the cyclic spectral analysis-based technique. A new damage index based on spectral correlation exploiting the non-linear intermodulation in the response is proposed. The proposed cyclic spectral analysis-based diagnostics are highly immune to the measurement noise. Numerical and experimental simulation studies have been carried out by considering a beam with single and multiple breathing cracks, to test and verify the robustness and effectiveness of the proposed technique. |
---|---|
ISSN: | 1475-9217 1741-3168 |
DOI: | 10.1177/1475921719836953 |