Parameter optimization and texture evolution in single point incremental sheet forming process

Prototyping through incremental sheet forming is emerging as a latest trend in the manufacturing industries for fabricating personalized components according to customer requirement. In this study, a laboratory scale single-point incremental forming test setup was designed and fabricated to deform A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part B, Journal of engineering manufacture Journal of engineering manufacture, 2020-01, Vol.234 (1-2), p.126-139
Hauptverfasser: Basak, Shamik, Prasad, K Sajun, Mehto, Amarjeet, Bagchi, Joy, Ganesh, Y Shiva, Mohanty, Saurav, Sidpara, Ajay M, Panda, Sushanta Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prototyping through incremental sheet forming is emerging as a latest trend in the manufacturing industries for fabricating personalized components according to customer requirement. In this study, a laboratory scale single-point incremental forming test setup was designed and fabricated to deform AA6061 sheet metal plastically. In addition, response surface methodology with Box–Behnken design technique was used to establish different regression models correlating input process parameters with mechanical responses such as angle of failure, part depth per unit time and surface roughness. Correspondingly, the regression models were implemented to optimize the input process parameters, and the predicted responses were successfully validated at the optimal conditions. It was observed that the predicted absolute error for angle of failure, part depth per unit time and surface roughness responses was approximately 0.9%, 4.4% and 6.3%, respectively, for the optimum parametric combination. Furthermore, the post-deformation responses from an optimized single point incremental forming truncated cone were correlated with microstructural evolution. It was observed that the peak hardness and highest areal surface roughness of 158 ± 9 HV and 1.943 μm, respectively, were found near to the pole of single-point incremental forming truncated cone, and the highest major plastic strain at this region was 0.80. During incremental forming, a significant increase in microhardness occurred due to grain refinement, whereas a substantial increase in the Brass and S texture component was responsible for the increase in the surface roughness.
ISSN:0954-4054
2041-2975
2041-1975
DOI:10.1177/0954405419846001