Throughput Analysis of Smart Buildings-oriented Wireless Networks under Jamming Attacks

Internet of Things (IoT) makes possible diverse smart applications through incorporating information from various sensors and enabling interoperability among different control systems. Adopting IoT in smart building paradigm enables efficient design, control, and management of converged infrastructu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile networks and applications 2021-08, Vol.26 (4), p.1440-1448
Hauptverfasser: Wei, Xianglin, Wang, Tongxiang, Tang, Chaogang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Internet of Things (IoT) makes possible diverse smart applications through incorporating information from various sensors and enabling interoperability among different control systems. Adopting IoT in smart building paradigm enables efficient design, control, and management of converged infrastructures. As one of the dominated wireless communication standards adopted in smart buildings-oriented IoT architecture, IEEE 802.11-series standards are expected to play an important role in the nascent IoT. Furthermore, heterogeneous sensors, devices, and controllers deployed for different smart ‘silos’ could connect and collaborate with each other via the converged wireless networks. To simultaneously support a large number of devices, it is critical to know the transmission capacity of the network in the design stage, especially when malicious jamming attacks exist. In this backdrop, stochastic geometry theory is adopted in this paper to investigate the throughput of IEEE 802.11 enabled IoT, where a ring model is put forward to capture the distribution of legitimate nodes and jammers. Afterwards, the collision probability of wireless transmission is derived from the perspective of both physical layer and MAC layer. Then, the throughput of each IoT node is calculated. To validate our models, numerical tests as well as simulation results derived on NS3 are provided with various parameter settings. Simulation results show that our models could accurately characterize the performance of IEEE 802.11-enabled wireless networks under jamming attacks.
ISSN:1383-469X
1572-8153
DOI:10.1007/s11036-019-01481-7