A Novel Fluorescent Probe Based on Perylene Derivative for Hg2+ Ions and Biological Thiols and its Application in Live Cell Imaging and Theoretical Calculations

The selective and sensitive detection of biothiols; cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) in aqueous solutions is of considerable importance because of their pivotal roles in maintaining the reducing environment in the cells. This study describes a strategy for the determination o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electroanalysis (New York, N.Y.) N.Y.), 2020-04, Vol.32 (4), p.775-780
Hauptverfasser: Karuk Elmas, Şükriye Nihan, Berk Gunay, Ibrahim, Karagoz, Abdurrahman, Bostanci, Aykut, Sadi, Gökhan, Yilmaz, Ibrahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The selective and sensitive detection of biothiols; cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) in aqueous solutions is of considerable importance because of their pivotal roles in maintaining the reducing environment in the cells. This study describes a strategy for the determination of biothiols based on the PDI/Met‐Hg2+complex platform. We designed and fabricated methionine modified perylene diimide molecule as a selective sensing probe for Hg2+ ions in aqueous solutions (PDI/Met‐Hg2+). The complex between perylene bisimide derivative (PDI/Met) and Hg2+ was investigated and it demonstrated turn‐on fluorescence response for the detection of the biological thiols. Besides, PDI/Met displayed fluorescence quenching response in the presence of mercury ions and the emission intensity of PDI/Met‐Hg2+ was recovered after transferring biothiols (Cys, Hcy, and GSH). Thus, PDI/Met could be utilized as a fluorescent chemosensor for the sequential recognition of mercury ions and biological thiols.
ISSN:1040-0397
1521-4109
DOI:10.1002/elan.201900655