A highly sensitive and tunable plasmonic sensor based on a graphene tubular resonator

A novel configuration of dynamically tunable surface plasmon polaritons (SPPs) is proposed based on two waveguides and one nanotube graphene in the terahertz range and is numerically investigated as a highly sensitive sensor. In the proposed structure, the two graphene waveguides coupled to the nano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics communications 2020-03, Vol.458, p.124686, Article 124686
Hauptverfasser: Akbari, Ladan, Abedi, Kambiz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel configuration of dynamically tunable surface plasmon polaritons (SPPs) is proposed based on two waveguides and one nanotube graphene in the terahertz range and is numerically investigated as a highly sensitive sensor. In the proposed structure, the two graphene waveguides coupled to the nanotube have two plasmonic modes which have two high sensitivities in different frequencies. The results show that in this structure, the sensitivity values are measured as the order of 7714 nm/RIU inside the tube and 18500 nm/RIU in the total environment. The sensitivity value in the total environment is at least 148.3% larger than those of previously reported waveguides which is an excellent result. This graphene waveguide sensor can have an important practical application in biosensors and lab-on-chip systems.
ISSN:0030-4018
1873-0310
DOI:10.1016/j.optcom.2019.124686