Rethinking sources of nitrogen to cereal crops

Understanding how to manage N inputs to identify the practices that maximize N recovery has been an organizing principle of agronomic research. Because growth in N fertilizer inputs is expected to continue in an ongoing effort to boost crop production over coming decades, understanding how to effici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2020-01, Vol.26 (1), p.191-199
Hauptverfasser: Yan, Ming, Pan, Genxing, Lavallee, Jocelyn M., Conant, Richard T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding how to manage N inputs to identify the practices that maximize N recovery has been an organizing principle of agronomic research. Because growth in N fertilizer inputs is expected to continue in an ongoing effort to boost crop production over coming decades, understanding how to efficiently manage recovery of fertilizer N will be important going forward. Yet synthesis of published data that has traced the fate of 15N‐labeled fertilizer shows that less than half of the N taken up by crops is derived from current‐year N fertilizer. The source of the majority of N in crops is something other than current‐year fertilizer and the sources are not really known. This is true for maize (only 41% of N in crops was from current‐year N fertilizer), rice (32%), and small grains (37%). Recovery of organic fertilizer N (manure, green manure, compost, etc.) in crops is low (27%), though N recovery in subsequent years (10%) was greater than that for mineral fertilizers. Thus, while research on efficiency of N fertilizer use through improved rate, type, location, and timing is important, this research fails to directly address management of the majority of the N supplied to crops. It seems likely that the majority of non‐fertilizer N found in crops comes from turnover of soil and crop residue N. We encourage the research community to revisit the mental model that fertilizer is a replacement for N supply from turnover of soil organic N (SON) and consider a model in which N fertilizer augments ongoing SON turnover and makes an important longer term contribution to SON maintenance and turnover. Research focused on the efficient recovery of N current‐year fertilizer inputs neglects this potential role for building soil N and managing soil N turnover, which seems likely to be the most important source of crop N. We synthesized 15N fertilizer studies and integrated these with other N budget data to better understand the source of the N found in cereal crops. Most crop N comes from a source other than current year's fertilizer. We believe that research focused on the efficient recovery of N current‐year fertilizer inputs neglects the role for building soil N and managing soil N turnover, which seems likely to be the most important source of crop N.
ISSN:1354-1013
1365-2486
DOI:10.1111/gcb.14908