Impaired LH surge amplitude in gonadotrope-specific progesterone receptor knockout mice

The progesterone receptor (PR, encoded by Pgr) plays essential roles in reproduction. Female mice lacking the PR are infertile, due to the loss of the protein’s functions in the brain, ovary, and uterus. PR is also expressed in pituitary gonadotrope cells, but its specific role therein has not been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of endocrinology 2020-01, Vol.244 (1), p.111-122
Hauptverfasser: Toufaily, Chirine, Schang, Gauthier, Zhou, Xiang, Wartenberg, Philipp, Boehm, Ulrich, Lydon, John P, Roelfsema, Ferdinand, Bernard, Daniel J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The progesterone receptor (PR, encoded by Pgr) plays essential roles in reproduction. Female mice lacking the PR are infertile, due to the loss of the protein’s functions in the brain, ovary, and uterus. PR is also expressed in pituitary gonadotrope cells, but its specific role therein has not been assessed in vivo. We therefore generated gonadotrope-specific Pgr conditional knockout mice (cKO) using the Cre-LoxP system. Overall, both female and male cKO mice appeared phenotypically normal. cKO females displayed regular estrous cycles (vaginal cytology) and normal fertility (litter size and frequency). Reproductive organ weights were comparable between wild-type and cKO mice of both sexes, as were production and secretion of the gonadotropins, LH and FSH, with one exception. On the afternoon of proestrus, the amplitude of the LH surge was blunted in cKO females relative to controls. Contrary to predictions of earlier models, this did not appear to derive from impaired GnRH self-priming. Collectively, these data indicate that PR function in gonadotropes may be limited to regulation of LH surge amplitude in female mice via a currently unknown mechanism.
ISSN:0022-0795
1479-6805
DOI:10.1530/JOE-19-0013