p-adic Mahler measure and Z-covers of links

Let p be a prime number. We develop a theory of p -adic Mahler measure of polynomials and apply it to the study of \mathbb{Z} -covers of rational homology 3-spheres branched over links. We obtain a p -adic analogue of the asymptotic formula of the torsion homology growth and a balance formula among...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2020-01, Vol.40 (1), p.272-288
1. Verfasser: Ueki, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let p be a prime number. We develop a theory of p -adic Mahler measure of polynomials and apply it to the study of \mathbb{Z} -covers of rational homology 3-spheres branched over links. We obtain a p -adic analogue of the asymptotic formula of the torsion homology growth and a balance formula among the leading coefficient of the Alexander polynomial, the p -adic entropy and the Iwasawa \unicode[STIX]{x1D707}_{p} -invariant. We also apply the purely p -adic theory of Besser-Deninger to \mathbb{Z} -covers of links. In addition, we study the entropies of profinite cyclic covers of links. We examine various examples throughout the paper.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2018.35