Design of High-Speed Logic Circuits with Four-Step RRAM-Based Logic Gates

The RRAM (resistive random-access memory) is one of the most competitive candidates of the emerging non-volatile memory devices. In recent years, the RRAM has been used as memory device and also to build logic circuit. However, the design method of the RRAM-based logic circuit is still an open issue...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2020-06, Vol.39 (6), p.2822-2840
Hauptverfasser: Cui, Xiaole, Ma, Xiao, Lin, Qiujun, Li, Xiang, Zhou, Hang, Cui, Xiaoxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The RRAM (resistive random-access memory) is one of the most competitive candidates of the emerging non-volatile memory devices. In recent years, the RRAM has been used as memory device and also to build logic circuit. However, the design method of the RRAM-based logic circuit is still an open issue. This paper proposes a design method of logic circuit based on the four-step RRAM logic gates. The design rules are studied for both the combinational and the sequential logic circuits in a parallel style. The design practices and synthesis results show that the proposed methods generate the high-performance circuits for the arbitrary logic functions. Moreover, the four-step RRAM-based logic gates are suitable for designing the circuits with pipelined architecture, since the different RRAM logic blocks have the uniform working speed. The pipelined N-bit ripple carry adder and the N-bit multiplier outperform the other RRAM base counterparts; the output results are obtained only with 2 N  + 2 and 6 N − 4 working cycles, respectively.
ISSN:0278-081X
1531-5878
DOI:10.1007/s00034-019-01300-0