A Note on Inhomogeneous Percolation on Ladder Graphs

Let G = ( V , E ) be the graph obtained by taking the cartesian product of an infinite and connected graph G = ( V , E ) and the set of integers Z . We choose a collection C of finite connected subgraphs of G and consider a model of Bernoulli bond percolation on G which assigns probability q of bein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletim da Sociedade Brasileira de Matemática 2020-09, Vol.51 (3), p.827-833
Hauptverfasser: de Lima, Bernardo N. B., Sanna, Humberto C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G = ( V , E ) be the graph obtained by taking the cartesian product of an infinite and connected graph G = ( V , E ) and the set of integers Z . We choose a collection C of finite connected subgraphs of G and consider a model of Bernoulli bond percolation on G which assigns probability q of being open to each edge whose projection onto G lies in some subgraph of C and probability p to every other edge. We show that the critical percolation threshold p c ( q ) is a continuous function in (0, 1), provided that the graphs in C are “well-spaced” in G and their vertex sets have uniformly bounded cardinality. This generalizes a recent result due to Szabó and Valesin.
ISSN:1678-7544
1678-7714
DOI:10.1007/s00574-019-00176-7